Homogenization theory and the assessment of extreme field values in composites with random microstructure
Document Type
Article
Publication Date
6-13-2005
Abstract
Suitable macroscopic quantities are identified and used to assess the field distribution within a composite specimen of finite size with random microstructure. Composites made of N anisotropic dielectric materials are considered. The characteristic length scale of the microstructure relative to the length scale of the specimen is denoted by ε, and realizations of the random composite microstructure are labeled by ω. Consider any cube C 0 located inside the composite. The function Pε (t, C 0, ω) gives the proportion of C 0 where the square of the electric field intensity exceeds t. The analysis focuses on the case when 0 < ε ≪ 1. Rigorous upper bounds on lim ε→0P ε(t, C 0, ω) are found. They are given in terms of the macrofield modulation functions. The macrofield modulation functions capture the excursions of the local electric field fluctuations about the homogenized or macroscopic electric field. Information on the regularity of the macrofield modulations translates into bounds on lim ε→0P ε(t, C 0, ω). Sufficient conditions are given in terms of the macrofield modulation functions that guarantee polynomial and exponential decay of lim ε→0P ε(t, C 0, ω) with respect to "t." For random microstructure with oscillation on a sufficiently small scale we demonstrate that a pointwise bound on the macrofield modulation function provides a pointwise bound on the actual electric field intensity. These results are applied to assess the distribution of extreme electric field intensity for an L-shaped domain filled with a random laminar microstructure. © 2004 Society for Industrial and Applied Mathematics.
Publication Source (Journal or Book title)
SIAM Journal on Applied Mathematics
First Page
475
Last Page
493
Recommended Citation
Lipton, R. (2005). Homogenization theory and the assessment of extreme field values in composites with random microstructure. SIAM Journal on Applied Mathematics, 65 (2), 475-493. https://doi.org/10.1137/S0036139903426976