Document Type
Article
Publication Date
12-1-2003
Abstract
We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset S of a reference domain, and the complement of S is made of two other "phases", the "vold" and a fictitious "liquid" that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure S, which is the total work of the pressure and internal forces at the equilibrium displacement. In order to prevent from homogenization we add a penalization on the perimeter of S. We propose an approximation of our problem in the framework of Γ-convergence, based on an approximation of our three phases by a smooth phase-field. We detail the numerical implementation of the approximate energies and show a few experiments. © EDP Sciences, SMAI 2003.
Publication Source (Journal or Book title)
ESAIM - Control, Optimisation and Calculus of Variations
First Page
19
Last Page
48
Recommended Citation
Bourdin, B., & Chambolle, A. (2003). Design-dependent loads in topology optimization. ESAIM - Control, Optimisation and Calculus of Variations (9), 19-48. https://doi.org/10.1051/cocv:2002070