Metric convexity of symmetric cones
Document Type
Article
Publication Date
12-1-2007
Abstract
In this paper we introduce a general notion of a symmetric cone, valid for the finite and infinite dimensional case, and prove that one can deduce the seminegative curvature of the Thompson part metric in this general setting, along with standard inequalities familiar from operator theory. As a special case, we prove that every symmetric cone from a JB-algebra satisfies a certain convexity property for the Thompson part metric: the distance function between points evolving in time on two geodesies is a convex function. This provides an affirmative answer to a question of Neeb [22].
Publication Source (Journal or Book title)
Osaka Journal of Mathematics
First Page
795
Last Page
816
Recommended Citation
Lawson, J., & Lim, Y. (2007). Metric convexity of symmetric cones. Osaka Journal of Mathematics, 44 (4), 795-816. Retrieved from https://repository.lsu.edu/mathematics_pubs/607