Document Type
Article
Publication Date
1-1-1982
Abstract
Let S be the Schwartz space of rapidly decreasing real functions. The dual space S* consists of the tempered distributions and the relation S ⊂ L2(R) ⊂ S* holds. Let γ be the Gaussian white noise on S* with the characteristic functional γ(ξ) = exp{-∥ξ∥2/2}, ξ ∈ S, where ∥·∥ is the L2(R)-norm. Let ν be the Poisson white noise on S* with the characteristic functional ν(ξ) = expΥ{hooked}R∫R {[exp(iξ(t)u)] - 1 - (1 + u2)-1(iξ(t)u)} dη(u)dt), ξ ∈ S, where the Lévy measure is assumed to satisfy the condition ∫Ru2dη(u) < ∞. It is proved that γ*ν has the same dichotomy property for shifts as the Gaussian white noise, i.e., for any ω ∈ S*, the shift (γ*ν)ω of γ*ν by ω and γ*ν are either equivalent or orthogonal. They are equivalent if and only if when ω ∈ L2(R) and the Radon-Nikodym derivative is derived. It is also proved that for the Poisson white noice νω is orthogonal to ν for any non-zero ω in S*. © 1982.
Publication Source (Journal or Book title)
Journal of Multivariate Analysis
First Page
80
Last Page
88
Recommended Citation
Kuo, H., & Smolenski, W. (1982). On admissible shifts of generalized white noises. Journal of Multivariate Analysis, 12 (1), 80-88. https://doi.org/10.1016/0047-259X(82)90084-7