Quaternion rational surfaces
Document Type
Article
Publication Date
6-1-2020
Abstract
A quaternion rational surface is a rational surface generated by two rational space curves via quaternion multiplication. In general, the structure of the graded minimal free resolution of a rational surface is unknown. The goal of this paper is to construct the graded minimal free resolution of a quaternion rational surface generated by two rational space curves. We will provide the explicit formulas for the maps of these graded minimal free resolutions. The approach we take is to utilize the information of the-bases of the generating rational curves, and create the generating sets for the first and second syzygy modules in the graded minimal free resolutions. In addition, we show that the ideal generated by the first syzygy module expressed in terms of moving planes is exactly the same as the ideal generated by the parametrization in the affine ring.
Publication Source (Journal or Book title)
Journal of Commutative Algebra
First Page
237
Last Page
261
Recommended Citation
Hoffman, J., Jia, X., & Wang, H. (2020). Quaternion rational surfaces. Journal of Commutative Algebra, 12 (2), 237-261. https://doi.org/10.1216/jca.2020.12.237