Document Type

Article

Publication Date

1-1-2002

Abstract

A graph G is called cycle Mengerian (CM) if for all nonnegative integral function w defined on V(G), the maximum number of cycles (repetition is allowed) in G such that each vertex v is used at most w(v) times is equal to the minimum of ∑ {w(x) : x ∈ X}, where the minimum is taken over all X ⊆ V(G) such that deleting X from G results in a forest. The purpose of this paper is to characterize all CM graphs in terms of forbidden structures. As a corollary, we prove that if the fractional version of the above minimization problem always have an integral optimal solution, then the fractional version of the maximization problem will always have an integral optimal solution as well. 2002 Elsevier Science (USA).

Publication Source (Journal or Book title)

Journal of Combinatorial Theory. Series B

First Page

381

Last Page

407

Share

COinS