Document Type

Article

Publication Date

1-1-1997

Abstract

There have been many attempts to settle the question whether there exist nontrivial knots with trivial Jonespolynomial. In this paper we show that such a knot must have crossing number at least 18. Furthermore we give the number of prime alternating knots and an upper bound for the number of prime knots up to 17 crossings. We also compute the number of different HOMFLY, Jonesand Alexander polynomials for knots up to 15 crossings. © A K Peters, Ltd.

Publication Source (Journal or Book title)

Experimental Mathematics

First Page

51

Last Page

56

Share

COinS