Document Type

Article

Publication Date

1-1-2013

Abstract

We obtain bounds on the higher divergence functions of right-angled Artin groups (RAAGs), finding that the k-dimensional divergence of a RAAG is bounded above by r2k+2. These divergence functions, previously defined for Hadamard manifolds to measure isoperimetric properties at infinity, are defined here as a family of quasi-isometry invariants of groups. We also show that the kth order Dehn function of a Bestvina-Brady group is bounded above by V (2k+2)/k and construct a class of RAAGs called orthoplex groups which show that each of these upper bounds is sharp. © 2013 London Mathematical Society.

Publication Source (Journal or Book title)

Journal of the London Mathematical Society

First Page

663

Last Page

688

Share

COinS