Document Type

Article

Publication Date

10-1-2018

Abstract

In this paper, we develop a parameterized proximal point algorithm (P-PPA) for solving a class of separable convex programming problems subject to linear and convex constraints. The proposed algorithm is provable to be globally convergent with a worst-case O(1 / t) convergence rate, where t denotes the iteration number. By properly choosing the algorithm parameters, numerical experiments on solving a sparse optimization problem arising from statistical learning show that our P-PPA could perform significantly better than other state-of-the-art methods, such as the alternating direction method of multipliers and the relaxed proximal point algorithm.

Publication Source (Journal or Book title)

Optimization Letters

First Page

1589

Last Page

1608

Share

COinS