Numerical approximation of elliptic problems with log-normal random coefficients

Document Type

Article

Publication Date

1-1-2019

Abstract

In this work, we consider a non-standard preconditioning strategy for the numerical approximation of the classical elliptic equations with log-normal random coefficients. In earlier work, a Wick-type elliptic model was proposed by modeling the random flux through the Wick product. Due to the lower-triangular structure of the uncertainty prop-agator, this model can be approximated efficiently using the Wiener chaos expansion in the probability space. Such a Wick-type model provides, in general, a second-order approximation of the classical one in terms of the standard deviation of the underlying Gaussian process. Furthermore, when the correlation length of the underlying Gaussian process goes to infinity, the Wick-type model yields the same solution as the classical one. These observations imply that the Wick-type elliptic equation can provide an effective preconditioner for the classical random elliptic equation under appropriate conditions. We use the Wick-type elliptic model to accelerate the Mont .

Publication Source (Journal or Book title)

International Journal for Uncertainty Quantification

First Page

161

Last Page

186

This document is currently not available here.

Share

COinS