Document Type

Article

Publication Date

1-1-2018

Abstract

We present a robust discretization of the Ericksen model of liquid crystals with variable degree of orientation coupled with colloidal effects and electric fields. The total energy consists of the Ericksen energy, a weak anchoring (or penalized Dirichlet) energy to model colloids, and an electrical energy for a given electric field. We describe our special discretization of the total energy along with a method to compute minimizers via a discrete quasi-gradient flow algorithm which has a strictly monotone energy decreasing property. Numerical experiments are given in two and three dimensions to illustrate that the method is able to capture non-trivial defect patterns, such as the Saturn ring defect. We conclude with a rigorous proof of the Γ-convergence of our discrete energy to the continuous energy.

Publication Source (Journal or Book title)

Journal of Computational Physics

First Page

568

Last Page

601

Share

COinS