Document Type
Article
Publication Date
12-1-2015
Abstract
It is shown both locally and globally that $${L_t^{\infty}(L_x^{3,q})}$$Lt∞(Lx3,q) solutions to the three-dimensional Navier–Stokes equations are regular provided $${q\neq\infty}$$q≠∞. Here $${L_x^{3,q}}$$Lx3,q, $${0 < q \leq\infty}$$0
Publication Source (Journal or Book title)
Journal of Mathematical Fluid Mechanics
First Page
741
Last Page
760
Recommended Citation
Phuc, N. (2015). The Navier–Stokes Equations in Nonendpoint Borderline Lorentz Spaces. Journal of Mathematical Fluid Mechanics, 17 (4), 741-760. https://doi.org/10.1007/s00021-015-0229-2
COinS