The Hardy-Littlewood maximal function, Choquet integrals, and embeddings of Sobolev type
Document Type
Article
Publication Date
4-1-2022
Abstract
We obtain bounds in full range of exponents for the Hardy-Littlewood maximal function on spaces defined via Choquet integrals associated to Bessel or Riesz capacities. We then deduce Sobolev type embeddings in these spaces as a consequence.
Publication Source (Journal or Book title)
Mathematische Annalen
First Page
1865
Last Page
1879
Recommended Citation
Ooi, K., & Phuc, N. (2022). The Hardy-Littlewood maximal function, Choquet integrals, and embeddings of Sobolev type. Mathematische Annalen, 382 (3-4), 1865-1879. https://doi.org/10.1007/s00208-021-02227-1
COinS