Macroscopic effects of intraparticle fracture, grain topology and shape on vehicle dynamics and mobility over gravel road beds

Document Type

Article

Publication Date

2-1-2025

Abstract

Abstract: The hybrid particle-based computational platform that couples peridynamics with the discrete element method (PeriDEM) is used to model vehicle mobility over roadbeds. We consider wheels rolling over gravel beds, where gravel is allowed to deform and fracture. The motion of particles are not constrained to translation and rotation as in DEM and grains can deform elastically or inelastically. This allows for more modes of inter-particle interaction. The effects of gravel shape and topology on the vehicle mobility are examined using the higher fidelity modeling. Here we study how these aspects affect vehicle range, average vehicle velocity, traction as measured by wheel slip, as well as the overall energy needed to travel a prescribed distance. When intraparticle fracture can occur, computations identify conditions on gravel particle topology that enhance vehicle mobility. In other computer simulations it is found that the driving torque is monotonically increasing with slip and capture trends seen in experiment Smith (Journal of Terramechanics, 2014). Graphical abstract: (Figure presented.)

Publication Source (Journal or Book title)

Granular Matter

This document is currently not available here.

Share

COinS