Multigrid methods for saddle point problems: Stokes and Lamé systems
Document Type
Article
Publication Date
1-1-2014
Abstract
We develop new multigrid methods for a class of saddle point problems that include the Stokes system in fluid flow and the Lamé system in linear elasticity as special cases. The new smoothers in the multigrid methods involve optimal preconditioners for the discrete Laplace operator. We prove uniform convergence of the W-cycle algorithm in the energy norm and present numerical results for W-cycle and V-cycle algorithms.
Publication Source (Journal or Book title)
Numerische Mathematik
First Page
193
Last Page
216
Recommended Citation
Brenner, S., Li, H., & Sung, L. (2014). Multigrid methods for saddle point problems: Stokes and Lamé systems. Numerische Mathematik, 128 (2), 193-216. https://doi.org/10.1007/s00211-014-0607-3