Document Type
Article
Publication Date
6-30-2018
Abstract
We consider a model Poisson problem in Rd (d = 2, 3) and establish error estimates for virtual element methods on polygonal or polyhedral meshes that can contain small edges (d = 2) or small faces (d = 3). Our results extend the ones in [L. Beirão da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual element method, Math. Models Methods Appl. Sci. 27 (2017) 2557-2594] for the original two-dimensional virtual element method from [L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199-214] to the version of the virtual element method in [B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini and A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl. 66 (2013) 376-391] that can also be applied to problems in three dimensions.
Publication Source (Journal or Book title)
Mathematical Models and Methods in Applied Sciences
First Page
1291
Last Page
1336
Recommended Citation
Brenner, S., & Sung, L. (2018). Virtual element methods on meshes with small edges or faces. Mathematical Models and Methods in Applied Sciences, 28 (7), 1291-1336. https://doi.org/10.1142/S0218202518500355