Document Type
Article
Publication Date
10-2020
Abstract
Although graduation rates have interested stakeholders, educational researchers, and policymakers for some time, little progress has been made on the overall graduation rate at four-year state colleges. Even though selective admission based on academic indicators such as high school GPA and ACT/ SAT have widely been used in the USA for years, and recent statistics show that less than 40% of students graduate from four-year state colleges in four years in the US. The authors propose using an ensemble of analytic models that considers cost as a better form of analysis that can be used as input to decision support systems to inform decision makers and help them choose intervention methods. This article uses ten years of data for 10,000 students and applies ten analytical models to find the best predictor of at-risk students. This research also uses the receiver operating characteristic curve to help determine the most cost-effective trade-off between false positive and false negative levels.
Publication Source (Journal or Book title)
JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING
First Page
43
Last Page
62
Recommended Citation
Wang, X., Schneider, H., & Walsh, K. R. (2020). A Predictive Analytics Approach to Building a Decision Support System for Improving Graduation Rates at a Four-Year College. JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING, 32 (4), 43-62. https://doi.org/10.4018/JOEUC.2020100103