•  
  •  
 

Journal of Stochastic Analysis

Abstract

Standard jump-diffusion models assume independence between jumps and diffusion components. We develop a multi-type jump-diffusion model where jump occurrence and magnitude depend on contemporaneous diffusion movements. Unlike previous one-sided models that create arbitrage opportunities, our framework includes upward and downward jumps triggered by both large upward and large downward diffusion increments. We derive the explicit no-arbitrage condition linking the physical drift to model pa- rameters and market risk premia by constructing an Equivalent Martingale Measure using Girsanov’s theorem and a normalized Esscher transform. This condition provides a rigorous foundation for arbitrage-free pricing in models with diffusion-dependent jumps.

DOI

10.31390/josa.6.3.02

Share

COinS