Identifier

etd-10182010-105045

Degree

Master of Science in Electrical Engineering (MSEE)

Department

Electrical and Computer Engineering

Document Type

Thesis

Abstract

Watermarking is a technique, which is used in protecting digital information like images, videos and audio as it provides copyrights and ownership. Audio watermarking is more challenging than image watermarking due to the dynamic supremacy of hearing capacity over the visual field. This thesis attempts to solve the quantization based audio watermarking technique based on both the Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT). The underlying system involves the statistical characteristics of the signal. This study considers different wavelet filters and quantization techniques. A comparison is performed on diverge algorithms and audio signals to help examine the performance of the proposed method. The embedded watermark is a binary image and different encryption techniques such as Arnold Transform and Linear Feedback Shift Register (LFSR) are considered. The watermark is distributed uniformly in the areas of low frequencies i.e., high energy, which increases the robustness of the watermark. Further, spreading of watermark throughout the audio signal makes the technique robust against desynchronized attacks. Experimental results show that the signals generated by the proposed algorithm are inaudible and robust against signal processing techniques such as quantization, compression and resampling. We use Matlab (version 2009b) to implement the algorithms discussed in this thesis. Audio transformation techniques for compression in Linux (Ubuntu 9.10) are applied on the signal to simulate the attacks such as re-sampling, re-quantization, and mp3 compression; whereas, Matlab program for de-synchronized attacks like jittering and cropping. We envision that the proposed algorithm may work as a tool for securing intellectual properties of the musicians and audio distribution companies because of its high robustness and imperceptibility.

Date

2010

Document Availability at the Time of Submission

Release the entire work immediately for access worldwide.

Committee Chair

Rai, Suresh

DOI

10.31390/gradschool_theses.766

Share

COinS