Semester of Graduation

Summer 2018

Degree

Master of Science in Engineering Science (MSES)

Department

College of Engineering

Document Type

Thesis

Abstract

River stage prediction is an important problem in the water transportation industry. Accurate river stage predictions provide crucial information to barge and tow boat operators, port terminal captains, and lock management officials. Shallow river levels caused by prolonged drought impact the loading capacity of barges and tow boats. High river levels caused by excessive rainfall or snowmelt allow for greater tow capacities but make downstream transportation and lock management risky. Current academic river height prediction systems utilize either time series statistical analysis or machine learning algorithms to forecast future river heights, but systems that combine these two areas often limit their analysis to a single station or river basin. Empirical models require excessive computational power and cannot provide up-to-the-minute projections. In this project, the United States inland waterway system is divided into 24 subnetworks with the Atchafalaya, Lower Ohio, and Lower Mississippi subnetworks given special attention. Model generation, tuning, and testing processes are documented. The generated models are able to predict river stage one week in the future with root mean square error less than 0.75 feet for all three highlighted subnetworks.

Date

7-2-2018

Committee Chair

Knapp, Gerald

DOI

10.31390/gradschool_theses.4760

Share

COinS