Identifier

etd-04172012-230225

Degree

Master of Science in Electrical Engineering (MSEE)

Department

Electrical and Computer Engineering

Document Type

Thesis

Abstract

This thesis is a study on the implementation of an elevator’s position-controlled electric drive. The information contained within this paper serves as a framework to expand the usefulness of electric drives through the addition of digital control systems and switching power supplies. The tangible example of an elevator driven by a permanent-magnet DC motor is used for this paper so that students may relate to the work and apply it to their future projects. The tasks to be accomplished in order to achieve an electric elevator drive with position control are: determining the parameters of the permanent-magnet DC motor, designing a control system to direct the motor as desired, and verifying the performance of the system through use of computer simulations and experimental testing. The tests to derive the motor parameters as well as the theory behind the test are covered in depth before the design procedures for creating a cascaded control system are started. Computer simulations are conducted using the parameters and controllers which will be implemented in real-time before experimental testing in the lab begins. Conclusions are drawn about the performance of the position-controlled electric elevator drive based upon the simulation and experimental results. The implementation of an elevator driven by a permanent-magnet DC motor with position control is successful and provides an illustrative example to those who wish to apply electric drives to various mechanical systems

Date

2012

Document Availability at the Time of Submission

Release the entire work immediately for access worldwide.

Committee Chair

Mendrela, Ernest

DOI

10.31390/gradschool_theses.2938

Share

COinS