Identifier
etd-04172012-230225
Degree
Master of Science in Electrical Engineering (MSEE)
Department
Electrical and Computer Engineering
Document Type
Thesis
Abstract
This thesis is a study on the implementation of an elevator’s position-controlled electric drive. The information contained within this paper serves as a framework to expand the usefulness of electric drives through the addition of digital control systems and switching power supplies. The tangible example of an elevator driven by a permanent-magnet DC motor is used for this paper so that students may relate to the work and apply it to their future projects. The tasks to be accomplished in order to achieve an electric elevator drive with position control are: determining the parameters of the permanent-magnet DC motor, designing a control system to direct the motor as desired, and verifying the performance of the system through use of computer simulations and experimental testing. The tests to derive the motor parameters as well as the theory behind the test are covered in depth before the design procedures for creating a cascaded control system are started. Computer simulations are conducted using the parameters and controllers which will be implemented in real-time before experimental testing in the lab begins. Conclusions are drawn about the performance of the position-controlled electric elevator drive based upon the simulation and experimental results. The implementation of an elevator driven by a permanent-magnet DC motor with position control is successful and provides an illustrative example to those who wish to apply electric drives to various mechanical systems
Date
2012
Document Availability at the Time of Submission
Release the entire work immediately for access worldwide.
Recommended Citation
Ford, Peter James, "Electric elevator drive with position control" (2012). LSU Master's Theses. 2938.
https://repository.lsu.edu/gradschool_theses/2938
Committee Chair
Mendrela, Ernest
DOI
10.31390/gradschool_theses.2938