Identifier

etd-1114102-125456

Degree

Master of Science (MS)

Department

Physics and Astronomy

Document Type

Thesis

Abstract

Systematic constancy and accuracy of a treatment planning system (TPS) are crucial for the entire radiation treatment planning process (TPP). The Quality Assurance (QA) of individual components does not necessarily lead to satisfying performance of the whole process due to the possible errors introduced by the data transfer process between components and other fluctuations. However, most of current QA for TPS is confined to the treatment planning computers. In this study, a time efficient and integrated CT-TPS QA procedure is presented, which starts at the beginning of the TPS input --- Computer Tomograhpy (CT). The whole QA procedure is based on the concept of simulating a real patient treatment. Following the CT scan of a head phantom with geometrical objects, a set of reference treatment plans for each accelerator, with all energy beams included, were established. Whenever TPS QA is necessary, the same procedure is repeated and a QA plan is produced. Through the comparison of QA plan with the reference plan, major systematic errors can be found easily and quickly. This method was also applied to VariSeed and PLATO Brachytherapy treatment planning systems. Moreover, if any error is detected in the system, TPS is broken into several parts and individual tests are also set up.

Date

2002

Document Availability at the Time of Submission

Release the entire work immediately for access worldwide.

Committee Chair

Oscar Hidalgo

DOI

10.31390/gradschool_theses.2866

Share

COinS