Identifier
etd-04092014-173505
Degree
Master of Science in Electrical Engineering (MSEE)
Department
Electrical and Computer Engineering
Document Type
Thesis
Abstract
Carbon nanotubes (CNTs) are becoming a promising new material for use in many fields including the field of electronics. Their mechanical and electrical properties lend themselves to be used in a new generation of electronic devices, namely flexible electronics. Although many deposition methods for carbon nanotubes exist, inkjet printing offers many advantages including superior patterning ability and low-cost fabrication. Presented in this work is the use of inkjet printing in order to deposit carbon nanotubes onto a flexible transparency film. The methods for developing and printing an aqueous single-walled carbon nanotube (SWCNT) ink and an aqueous multi-walled carbon nanotube (MWCNT) ink are discussed in detail. The carbon nanotubes are dispersed using sodium n-dodecyl sulfate (SDS), an anionic surfactant. It is discovered that the SDS:CNT ratio plays a crucial role in determining the conductivity of the printed carbon nanotube network. Thus, methods for optimizing this ratio are presented. To the author’s knowledge, this is the first report of carbon nanotube ink optimization regarding the ratio of dispersant concentration to carbon nanotube concentration. Additionally, the sheet resistance and transparency of the inkjet-printed carbon nanotube films are discussed. Incredibly conductive carbon nanotube networks were printed, reaching as low as 132 Ω/☐ for SWCNTs and 286 Ω/☐ for MWCNTs for 35 prints. These values are among the lowest reported sheet resistance values for carbon nanotube inkjet printing. Finally, the fabrication of a fully printed electrochemical sensor using inkjet-printed carbon nanotube electrodes is presented. The sensor was characterized using cyclic voltammetry, and the results confirm that inkjet-printed carbon nanotubes are indeed a candidate for use as flexible electrodes.
Date
2014
Document Availability at the Time of Submission
Secure the entire work for patent and/or proprietary purposes for a period of one year. Student has submitted appropriate documentation which states: During this period the copyright owner also agrees not to exercise her/his ownership rights, including public use in works, without prior authorization from LSU. At the end of the one year period, either we or LSU may request an automatic extension for one additional year. At the end of the one year secure period (or its extension, if such is requested), the work will be released for access worldwide.
Recommended Citation
Tortorich, Ryan P., "Carbon Nanotube Inkjet Printing for Flexible Electronics and Chemical Sensor Applications" (2014). LSU Master's Theses. 1810.
https://repository.lsu.edu/gradschool_theses/1810
Committee Chair
Choi, Jin-Woo
DOI
10.31390/gradschool_theses.1810