Identifier

etd-11112009-174803

Degree

Master of Science in Petroleum Engineering (MSPE)

Department

Petroleum Engineering

Document Type

Thesis

Abstract

The advent of the digital oil _x000C_eld and rapidly decreasing cost of computing creates opportunities as well as challenges in simulation based reservoir studies, in particular, real-time reservoir characterization and optimization. One challenge our e_x000B_orts are directed toward is the use of real-time production data to perform live reservoir characterization using high throughput, high performance computing environments. To that end we developed the required tools of parallel reservoir simulator, parallel ensemble Kalman _x000C_lter and a scalable work ow manager. When using this collection of tools, a reservoir modeler is able to perform large scale reservoir management studies in short periods of time. This includes studies with thousands of models that are individually complex and large, involving millions of degrees of freedom. Using parallel processing, we are able to solve these models much faster than we otherwise would on a single, serial machine. This motivated the development of a fast parallel reservoir simulator. Furthermore, distributing those simulations across resources leads to a smaller total time to completion by making use of distributed processing. This allows the development of a scalable high throughput work ow manager. Finally, with thousands of models, each with millions of degrees of freedom, we end up with a super uity of model parameters. This translates directly to billions of degrees of freedom in the reservoir study. To be able to use the ensemble Kalman _x000C_lter on these models, we needed to develop a parallel implementation of the ensemble Kalman _x000C_lter. This thesis discusses the enabling tools and technologies developed to address a speci _x000C_c problem: how to accurately characterize reservoirs, using large numbers of complex detailed models. For these characterization studies to be helpful in making production decisions, the time to solution must be feasible. To that end, our work is focused on developing and extending these tools, and optimizing their performance.

Date

2009

Document Availability at the Time of Submission

Release the entire work immediately for access worldwide.

Committee Chair

White, Christopher

DOI

10.31390/gradschool_theses.1413

Share

COinS