Date of Award
1999
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Education
First Advisor
James H. Wandersee
Abstract
The main research question of this study was: What gaps in biochemical understanding are revealed by a range of university introductory biology students as they work through a critically acclaimed multimedia program on photosynthesis, and what are the corresponding implications for elaboration of the Ausubel-Novak-Gowin Learning Theory (ANG, now Human Constructivism)? Twelve students, mixed for ability, gender and ethnicity, were recruited from two sections of "Bio 101." Before and after instruction in photosynthesis, in-depth clinical interviews were conducted during which participants completed a range of cognitive tasks such as sorting, concept mapping, explaining and predicting. Some tasks involved interacting with a computer simulation of photosynthesis. This study primarily employed qualitative case study and verbal analysis methods. Verbal analysis of the clinical interviews revealed numerous gaps that were categorized into typologies. The two major categories were propositional gaps and processing gaps. Propositional gaps were evident in development of participants' concepts, links and constructs. Significant among these were conceptual distance gaps and continuity of matter gaps. Gaps such as convention gaps and relative significance gaps seem to be due to naivete in the discipline. Processing gaps included gaps in graphic decoding skills and relevant cognitive habits such as self-monitoring and consulting prior knowledge. Although the gaps were easier to detect and isolate with the above-average participants, all participants showed evidence of at least some of these gaps. Since some gaps are not unexpected at all but the highest literacy levels, not all the gaps identified are to be considered deficiencies. The gaps identified support the attention given by ANG theorists to the role of prior knowledge and metacognition as well as the value of graphic organizers in knowledge construction. In addition, this study revealed numerous gaps in graphic decoding, indicating that both direct experience and explicit instruction are needed if students are to "learn how to learn with graphics," especially those graphics central to understanding a computer simulation's representations of structures, inputs, processes and outputs. It is hypothesized that gaps similar to those revealed in this study may be at the root of some alternative conceptions documented in the literature.
Recommended Citation
Griffard, Phyllis Baudoin, "Gaps in College Biology Students' Understanding of Photosynthesis: Implications for Human Constructivist Learning Theory and College Classroom Practice." (1999). LSU Historical Dissertations and Theses. 7086.
https://repository.lsu.edu/gradschool_disstheses/7086
ISBN
9780599636170
Pages
295
DOI
10.31390/gradschool_disstheses.7086