Date of Award
1999
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Chemical Engineering
First Advisor
John R. Collier
Abstract
Elongational melt flow behavior is an important and fundamental concept underlying many industrial plastics operations which involve a rapid change of shape as for example fiber spinning and stretching, bottle blow molding, and film blowing and stretching. Under high process loads polymeric materials experience enormous stresses causing the molecular structure to gain considerable orientation. This event has significant effects on the melt flow behavior and can be measured in terms of elongational viscosity and changes in enthalpy and entropy. Different polymeric materials with unique molecular characteristics are expected to respond uniquely to the elongational deformation; hence, molecular parameters such as molecular weight and degree of branching were related to the measurable elongational flow variables. Elongational viscosities were measured for high and low density polyethylenes using an advanced capillary extrusion rheometer fitted with semi-hyperbolic dies. Said dies establish a purely elongational. flow field at constant elongational strain rate. The elongational viscosities were evaluated under influence of process strain rate, Hencky strain (natural logarithm of area reduction of the extrusion die), and temperature. Enthalpy and entropy changes associated with the orientation development of semi-hyperbolic processed melts were also determined. Results showed that elongational viscosities were primarily affected by differences in weight average molecular weight rather than degree of branching. This effect was process strain rate as well as temperature dependent. An investigation of melt relaxation and the associated first decay time constants revealed that with increasing strain rate the molecular field of the melt asymptotically gained orientation in approaching a limit. As a result of this behavior molecular uniqueness vanished at high process strain rates, yielding to orientation development and the associated restructuring of the melt's molecular morphology. Flow induced orientation was measured in form of enthalpy changes that were largest for the highest elongational strain rates and larger Hencky strain. The enthalpy changes were in magnitude one order lower than the polymer's heat of fusion. This explained why peak melt temperatures, evaluated by differential scanning calorimetry, remained unchanged in magnitude with a rise in process strain rate and Hencky strain.
Recommended Citation
Seyfzadeh, Bijan, "Elongational Rheology of Polyethylene Melts." (1999). LSU Historical Dissertations and Theses. 7058.
https://repository.lsu.edu/gradschool_disstheses/7058
ISBN
9780599548794
Pages
76
DOI
10.31390/gradschool_disstheses.7058