Date of Award
1994
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Mathematics
First Advisor
Jurgen Hurrelbrink
Abstract
In the 1930's L. Redei and H. Reichardt established methods for determining the 4-rank of the narrow ideal class group of a quadratic number field, Q($D\sp{1/2}).$ One of these methods involves determining the number of D-splittings of the discriminant, D, of the number field. Later, this method was revised so that we need only find the rank of a matrix over F$\sb2$. In some cases, these Redei matrices can be viewed as adjacency matrices of graphs or digraphs. In Chapter I we introduce the graphs and matrices mentioned above, the method for finding 4-ranks, and present some preliminary results on the number of solutions of $aX\sp{n}$ + $bY\sp{n}$ = 1 over some finite fields. In Chapter II we use the graphs and matrices to study the 4-rank of the ideal class group of Q($D\sp{1/2})$ where D has exactly two prime divisors congruent to 3 modulo 4. In Chapter III, we use graphs to determine the number of solutions of $aX\sp{n}$ + $bY\sp{n}$ = 1 over the finite field Z/pZ up to congruences modulo 2.
Recommended Citation
Myers, Leigh Ann, "Graphs in Number Theory." (1994). LSU Historical Dissertations and Theses. 5746.
https://repository.lsu.edu/gradschool_disstheses/5746
Pages
195
DOI
10.31390/gradschool_disstheses.5746