Date of Award
1989
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Renewable Natural Resources
First Advisor
William J. Wiseman, Jr
Abstract
A 'slowly varying' and 'isolated' oceanic disturbance may locally drive the shelf circulation. This situation is analytically studied using a linear, steady-state, barotropic model. The solution has a dipolar structure over the shelf. This is consistent with an integral theorem of zero net relative angular momentum on the f-plane with a sloping topography, derived herein. It is found that the forced circulation patterns are controlled by the alongshore scale of the disturbance, magnitude of bottom stress, and geometry of the shelf. In particular, by generating significant relative vorticity due to the ageostrophic motion, the friction strongly influences the center position, the strength, and the size of the forced shelf motion. When large alongshore topographic variations are present, the combined effect of the friction and shelf curvature results in an asymmetry of the pressure field, with an intensified motion inshore.
Recommended Citation
He, Xinyu, "Barotropic Shelf Circulation Forced by an Isolated Oceanic Disturbance." (1989). LSU Historical Dissertations and Theses. 4780.
https://repository.lsu.edu/gradschool_disstheses/4780
Pages
66
DOI
10.31390/gradschool_disstheses.4780