Date of Award
2001
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Industrial Engineering
First Advisor
Gerald M. Knapp
Abstract
This research presents the creation of a new model for automating the generation of component and system reliability estimates from simulated field data for tightly coupled systems. The model utilizes the CMAC neural network architecture, which resembles the human cerebellum and is capable of approximating nonlinear functions. An analysis and testing of the network as a tool for reliability prediction of dependent components within an assembly has been performed. In order to evaluate the performance of the model, the network has been tested on simulated data and provided over 90% performance accuracy in learning non-linear functions that represent the dependency between components. This serves as a valuable tool for maintenance personnel faced with important and costly decisions regarding equipment maintenance policies.
Recommended Citation
Javadpour, Roya, "A Neural Network Approach to Dependent *Reliability Estimation." (2001). LSU Historical Dissertations and Theses. 348.
https://repository.lsu.edu/gradschool_disstheses/348
ISBN
9780493328560
Pages
106
DOI
10.31390/gradschool_disstheses.348