Degree

Doctor of Philosophy (PhD)

Department

Mathematics

Document Type

Dissertation

Abstract

For each finitely generated subgroup of a Coxeter group, we define a cell complex called a completion. We show that these completions characterizes the index and normality of the subgroup. We construct a completion corresponding to the intersection of two subgroups and use this construction to characterize malnormality of subgroups of right-angled Coxeter groups. Finally, we show that if a completion of a subgroup is finite, then the subgroup is quasiconvex. Using this, we show that certain reflection subgroups of a Coxeter are quasiconvex.

Date

4-4-2024

Committee Chair

Dani, Pallavi

Share

COinS