Identifier

etd-07102017-145455

Degree

Doctor of Philosophy (PhD)

Department

Engineering Science (Interdepartmental Program)

Document Type

Dissertation

Abstract

The transmission system is critical for automotive and heavy duty equipment due to its prominent role in the powertrain system, which is often challenged with degraded torque capacity and harsh dynamic response. Simulation-guided design can provide appropriate guidelines to resolve these problems with virtual analyses. In current study, the tribological and dynamical study of an automatic transmission is performed at two levels: a wet clutch and powertrain. In this dissertation, tribological study is performed for a wet clutch based on the thermohydrodynamic (THD) analysis that takes the following factors into account. • The groove effect (depth, area, and pattern) is investigated for lubrication analysis; • The elastic-plastic asperity contact model is used to predict the contact pressure; • The heat transfer during the entire cycle of engagement from slip to lock to detachment is covered; • The engagement time and the temperature profile are predicted for torque and thermal analysis. With large engagement cycles, the friction lining of a wet clutch is worn off due to the material degradation at high load/temperature condition. By relating the wear behavior with the mechanism of thermal degradation and thermomechanical degradation, a physics-based wear model is proposed for the first time to analyze the wear process in a wet clutch. The predicted wear rate falls within nearly 95% confidence interval of the test results. Discrepancies of simulation are primarily due to limited availability of input data and model assumptions. Therefore, an uncertainty quantification analysis of the wear model is performed using the Monte Carlo simulations. In addition, a comprehensive parametric analysis of the clutch wear is considered with various factors, including groove design (waffle pattern shows the minimum wear), material properties and operational configurations (rotational speed plays the most influential role). The dynamics of transmission directly affects the performance of the powertrain. The coupling effects of the key transmission components are examined. Of particular interests are the stick-slip behavior of the wet clutch and backlash of the gear train. Through simulation of the powertrain, the main source and the pattern of vibration propagation in the driveline are examined. Major vibration is observed during inappropriate clutch engagement.

Date

2017

Document Availability at the Time of Submission

Release the entire work immediately for access worldwide.

Committee Chair

Khonsari Michael

DOI

10.31390/gradschool_dissertations.4278

Share

COinS