Identifier

etd-1030103-161928

Degree

Doctor of Philosophy (PhD)

Department

Physics and Astronomy

Document Type

Dissertation

Abstract

Atomistic aspects of dynamic fracture in amorphous and nanostructured silica are herein studied via Molecular dynamics (MD) simulations, ranging from a million to 113 million atom system. The MD simulations were performed on massivelly parallel computers using highly efficient multi-resolution algorithms. Crack propagation in these systems is accompanied by nucleation and growth of nanometer scale cavities up to 20 nm ahead of the crack front. Cavities coalesce and merge with the advancing crack to cause mechanical failure. Recent AFM studies in silica glasses confirm this scenario of fracture [1]. The morphology of the fracture surfaces is studied by calculating the height-height correlation function. The MD simulation finds the first roughness exponent (æ=0.5). Simulations of amorphous nanostructured silica reveal pore nucleation ahead of the crack front, and the crack front meandering around the nanoparticles and merging with those pores.

Date

2003

Document Availability at the Time of Submission

Release the entire work immediately for access worldwide.

Committee Chair

Rajiv K Kalia

DOI

10.31390/gradschool_dissertations.3893

Share

COinS