Identifier

etd-06262014-234749

Degree

Doctor of Philosophy (PhD)

Department

Computer Science

Document Type

Dissertation

Abstract

Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method. The Tensor Contraction Engine (TCE) is a high-level program synthesis system that facilitates the generation of high-performance parallel programs from tensor contraction equations. We are developing a new software infrastructure for the TCE that is designed to allow experimentation with optimization algorithms for modern computing platforms, including for heterogeneous architectures employing general-purpose graphics processing units (GPGPUs). In this dissertation, we present improvements and extensions to the loop fusion optimization algorithm, which can be used with cost models, e.g., for minimizing memory usage or for minimizing data movement costs under a memory constraint. We show that our data structure and pruning improvements to the loop fusion algorithm result in significant performance improvements that enable complex cost models being use for large input equations. We also present an algorithm for optimizing the fused loop structure of handwritten code. It determines the regions in handwritten code that are safe to be optimized and then runs the loop fusion algorithm on the dependency graph of the code. Finally, we develop an optimization framework for generating GPGPU code consisting of loop fusion optimization with a novel cost model, tiling optimization, and layout optimization. Depending on the memory available on the GPGPU and the sizes of the tensors, our framework decides which processor (CPU or GPGPU) should perform an operation and where the result should be moved. We present extensive measurements for tuning the loop fusion algorithm, for validating our optimization framework, and for measuring the performance characteristics of GPGPUs. Our measurements demonstrate that our optimization framework outperforms existing general-purpose optimization approaches both on multi-core CPUs and on GPGPUs.

Date

2014

Document Availability at the Time of Submission

Secure the entire work for patent and/or proprietary purposes for a period of one year. Student has submitted appropriate documentation which states: During this period the copyright owner also agrees not to exercise her/his ownership rights, including public use in works, without prior authorization from LSU. At the end of the one year period, either we or LSU may request an automatic extension for one additional year. At the end of the one year secure period (or its extension, if such is requested), the work will be released for access worldwide.

Committee Chair

Baumgartner, Gerald

DOI

10.31390/gradschool_dissertations.3717

Share

COinS