Identifier
etd-07092008-073929
Degree
Doctor of Philosophy (PhD)
Department
Mathematics
Document Type
Dissertation
Abstract
The dissertation provides new multiscale methods for the analysis of heterogeneous media. The first part of the dissertation treats heterogeneous media using the theory of linear elasticity. In this context, a methodology is presented for bounding the higher order moments of the local stress and strain fields inside random elastic media. Optimal lower bounds that are given in terms of the applied loading and the volume (area) fractions for random two-phase composites are presented. These bounds provide a means to measure load transfer across length scales relating the excursions of the local fields to applied loads. The second part of the dissertation treats heterogeneous media using the peridynamic formulation of nonlocal continuum mechanics. In this context, a multiscale analysis method is presented for capturing the dynamics inside fiber-reinforced composites at both the structural scale and the microscopic scale. The method provides a multiscale numerical method with a cost that is much less than solving the full micro-scale model over the entire macroscopic domain.
Date
2008
Document Availability at the Time of Submission
Release the entire work immediately for access worldwide.
Recommended Citation
Alali, Bacim, "Multiscale analysis of heterogeneous media for local and nonlocal continuum theories" (2008). LSU Doctoral Dissertations. 3674.
https://repository.lsu.edu/gradschool_dissertations/3674
Committee Chair
Lipton, Robert
DOI
10.31390/gradschool_dissertations.3674