Identifier

etd-11142012-144831

Degree

Doctor of Philosophy (PhD)

Department

Mathematics

Document Type

Dissertation

Abstract

In this thesis our fi_x000C_rst concern is the study of the minimal time function corresponding to control problems with constant convex dynamics and closed target sets. Unlike previous work in this area, we do not make any nonempty interior or calmness assumptions and the minimal time functions is generally non-Lipschitzian. We show that the Proximal and Fréchet subgradients of the minimal time function are computed in terms of normal vectors to level sets. And we also computed the subgradients of the minimal time function in terms of the F-projection. Secondly, we consider the value function for Bolza Problem in optimal control and the calculus of variations. The main results present refi_x000C_ned formulas for calculating the Fréchet subgradient of the value function under minimal requirements, and are similar to those obtained for the minimal time function.

Date

2012

Document Availability at the Time of Submission

Release the entire work immediately for access worldwide.

Committee Chair

Wolenski, Peter

DOI

10.31390/gradschool_dissertations.2735

Share

COinS