Identifier

etd-06082010-092441

Degree

Doctor of Philosophy (PhD)

Department

Computer Science

Document Type

Dissertation

Abstract

Today, scientifi_x000C_c applications and experiments have become increasingly complex and more demanding in terms of their computational and data requirements. The amount of data generated and used has grown at a very rapid rate. As tens or hundreds of terabytes of data for a single application is very common today; petabytes and even exabytes of data will be very common in a few years. One of the major challenges in distributed computing environments is how to access these large datasets remotely over the network. Data staging and remote I/O are the most widely used data access methods for distributed applications. Application developers generally chose one over the other intuitively without making any scienti_x000C_fic comparison specifi_x000C_c to their applications since there is no generic model available that they can use. In this thesis, we develop generic models and set guidelines for the application developers which would help them to choose the most appropriate data access method for their application. We de_x000C_fine the parameters that potentially aff_x000B_ect the end-to-end performance of the distributed applications which need to access remote data. To achieve our goal, we implement a series of synthetic benchmark applications to simulate di_x000B_fferent data access patterns. We run these benchmark applications on diff_x000B_erent distributed computing settings with di_x000B_fferent parameters, such as network bandwidth, server and client capabilities, and data access ratio. We also use di_x000B_fferent remote I/O protocols to show the importance of the protocol in making a decision. We use regression analysis to develop applicable generic models for comparing diff_x000B_erent data access methods, and test our models in a real life application. The main contribution of our thesis is generic models that can be applied to most data-intensive distributed applications to decide the best data access technique for those applications. Our models provide the scientists and application developers an opportunity to choose the best data access method before actually running the application.

Date

2010

Document Availability at the Time of Submission

Release the entire work immediately for access worldwide.

Committee Chair

Kosar, Tevfik

DOI

10.31390/gradschool_dissertations.2525

Share

COinS