Title
Thermodynamics, structure, and transport properties of the MgO–Al2O3 liquid system
Document Type
Article
Publication Date
5-1-2019
Abstract
Seven liquids along the MgO–Al O join were simulated at zero pressure in temperature (T) range 2000–6000 K using the first-principles molecular dynamics method. The simulation results show continuous changes in various physical properties with composition (molar fraction of alumina, X). They suggest that the binary mixing tends to be nearly ideal with no immiscibility along the entire join. The calculated mean coordination numbers of MgO and AlO polyhedra gradually increase with increasing X, for example, their respective values are 4.6 and 4.3 at/near the MgO end, 5.2 and 4.6 for MgAl O spinel composition, and 5.5 and 4.8 at/near the alumina end. The mean O–O coordination number remains almost unchanged along the join at ≥ 12 implying a closely packed arrangement. In contrast, all other coordination types including O–Mg and O–Al change dramatically along the join. The calculated self-diffusion and viscosity coefficients vary much less with composition (by a factor of 4 or less along the entire join) than with temperature (by two orders of magnitudes over the T range considered). Their T–X variations can be well described by the respective Arrhenius equations with composition-dependent activation energies and pre-exponential parameters. While the alumina and silica components are considered to play a similar role with regard to the structural polymerization of amorphous aluminosilicates, our results show that they influence the melt transport properties very differently. Therefore, the general notion that these two oxide components play an equivalent role in multicomponent magmatic melts is not unambiguous. 2 3 2 4
Publication Source (Journal or Book title)
Physics and Chemistry of Minerals
First Page
501
Last Page
512
Recommended Citation
Karki, B., Maharjan, C., & Ghosh, D. (2019). Thermodynamics, structure, and transport properties of the MgO–Al2O3 liquid system. Physics and Chemistry of Minerals, 46 (5), 501-512. https://doi.org/10.1007/s00269-018-01019-5