Document Type
Article
Publication Date
8-28-2019
Abstract
Density of silicate melt dictates melt migration and establishes the gross structure of Earth's interior. However, due to technical challenges, the melt density of relevant compositions is poorly known at deep mantle conditions. Particularly, water may be dissolved in such melts in large amounts and can potentially affect their density at extreme pressure and temperature conditions. Here we perform first-principles molecular dynamics simulations to evaluate the density of Fe-rich, eutectic-like silicate melt (E melt) with varying water content up to about 12 wt %. Our results show that water mixes nearly ideally with the nonvolatile component in silicate melt and can decrease the melt density significantly. They also suggest that hydrous melts can be gravitationally stable in the lowermost mantle given its likely high iron content, providing a mechanism to explain seismically slow and dense layers near the core-mantle boundary.
Publication Source (Journal or Book title)
Geophysical Research Letters
First Page
9466
Last Page
9473
Recommended Citation
Du, Z., Deng, J., Miyazaki, Y., Mao, H., Karki, B., & Lee, K. (2019). Fate of Hydrous Fe-Rich Silicate Melt in Earth's Deep Mantle. Geophysical Research Letters, 46 (16), 9466-9473. https://doi.org/10.1029/2019GL083633