Document Type
Article
Publication Date
1-1-2017
Abstract
© 2016. The Authors. The Probing In situ with Neutron and Gamma ray (PING) instrument is an innovative application of active neutron-induced gamma ray technology. The objective of PING is to measure the elemental composition of the Martian regolith. This manuscript presents PINGˈs sensitivities as a function of the Martian regolith depth and PINGˈs uncertainties in the measurements as a function of observation time in passive and active mode. The modeled sensitivities show that in PINGˈs active mode, where both a pulsed neutron generator (PNG) and a gamma ray spectrometer (GRS) are used, PING can interrogate the material below the rover to about 20 cm due to the penetrating nature of the high-energy neutrons and the resulting secondary gamma rays observed with the GRS. PING is capable of identifying most major and minor rock-forming elements, including H, O, Na, Mn, Mg, Al, Si, P, S, Cl, Cr, K, Ca, Ti, Fe, and Th. The modeled uncertainties show that PINGˈs use of a PNG reduces the required observation times by an order of magnitude over a passive operating mode where the PNG is turned off. While the active mode allows for more complete elemental inventories with higher sensitivity, the gamma ray signatures of some elements are strong enough to detect in passive mode. We show that PING can detect changes in key marker elements and make thermal neutron measurements in about 1 min that are sensitive to H and Cl.
Publication Source (Journal or Book title)
Earth and Space Science
First Page
76
Last Page
90
Recommended Citation
Nowicki, S., Evans, L., Starr, R., Schweitzer, J., Karunatillake, S., McClanahan, T., Moersch, J., Parsons, A., & Tate, C. (2017). Modeled Martian subsurface elemental composition measurements with the probing in situ with neutron and Gamma ray instrument. Earth and Space Science, 4 (2), 76-90. https://doi.org/10.1002/2016EA000162