The Radon Transform, Inverse Problems, and Tomography

The Radon Transform, Inverse Problems, and Tomography

Files

Description

Since their emergence in 1917, tomography and inverse problems remain active and important fields that combine pure and applied mathematics and provide strong interplay between diverse mathematical problems and applications. The applied side is best known for medical and scientific use, in particular, medical imaging, radiotherapy, and industrial non-destructive testing. Doctors use tomography to see the internal structure of the body or to find functional information, such as metabolic processes, noninvasively. Scientists discover defects in objects, the topography of the ocean floor, and geological information using X-rays, geophysical measurements, sonar, or other data.This volume, based on the lectures in the Short Course The Radon Transform and Applications to Inverse Problems at the American Mathematical Society meeting in Atlanta, GA, January 3-4, 2005, brings together articles on mathematical aspects of tomography and related inverse problems. The articles cover introductory material, theoretical problems, and practical issues in 3-D tomography, impedance imaging, local tomography, wavelet methods, regularization and approximate inverse, sampling, and emission tomography. All contributions are written for a general audience, and the authors have included references for further reading.

LOC Call Number

QA672 .R33 2006

ISBN

9780821839300

Publication Date

2006

Department

Department of Mathematics

Publisher

American Mathematical Society

City

Providence

The Radon Transform, Inverse Problems, and Tomography

Share

COinS