The Combined Effect of Copper Nanoparticles and Microplastics on Transcripts Involved in Oxidative Stress Pathway in Rainbow Trout (Oncorhynchus Mykiss) Hepatocytes
Document Type
Article
Publication Date
10-1-2023
Abstract
Copper nanoparticles (CuNPs) and microplastics (MPs) are two emerging contaminants of freshwater systems. Despite their co-occurrence in many water bodies, the combined effects of CuNPs and MPs on aquatic organisms are not well-investigated. In this study, primary cultures of rainbow trout hepatocytes were exposed to dissolved Cu, CuNPs, MPs, or a combination of MPs and CuNPs for 48 h, and the transcript abundances of oxidative stress-related genes were investigated. Exposure to CuNPs or dissolved Cu resulted in a significant increase in the transcript abundances of two antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD). Exposure to CuNPs also led to an upregulation in the expression of Na+/K+ ATPase alpha 1 subunit (ATP1A1). Microplastics alone or in combination with CuNPs did not have a significant effect on abundances of the target gene transcripts. Overall, our findings suggested acute exposure to CuNPs or dissolved ions may induce oxidative stress in hepatocytes, and the Cu-induced effect on target gene transcripts was not associated with MPs.
Publication Source (Journal or Book title)
Bulletin of Environmental Contamination and Toxicology
Recommended Citation
Razmara, P., Zink, L., Doering, J., Miller, J., Wiseman, S., & Pyle, G. (2023). The Combined Effect of Copper Nanoparticles and Microplastics on Transcripts Involved in Oxidative Stress Pathway in Rainbow Trout (Oncorhynchus Mykiss) Hepatocytes. Bulletin of Environmental Contamination and Toxicology, 111 (4) https://doi.org/10.1007/s00128-023-03811-8