Title
An alternative method for constructing interpolatory subdivision from approximating subdivision
Document Type
Conference Proceeding
Publication Date
10-1-2012
Abstract
This paper presents a new perspective for constructing interpolatory subdivision from primal approximating subdivision. The basic idea is constructing the subdivision rule for new inserted vertices of a new interpolatory subdivision scheme based on an approximating subdivision algorithm applied to a local configuration of the mesh with one vertex updated for interpolation of the vertex. This idea is demonstrated by presenting two new interpolatory subdivision schemes based on Catmull-Clark subdivision for an arbitrary polygonal mesh and Loop subdivision for a triangular mesh, respectively. These algorithms are simple and have a small stencil for computing new points. The new perspective also shows a link between those classic approximating and interpolatory subdivision algorithms such as cubic B-spline curve subdivision and the four-point interpolatory subdivision, Catmull-Clark subdivision and Kobbelts interpolatory scheme, and Loop subdivision and the butterfly algorithm. © 2012 Elsevier B.V.
Publication Source (Journal or Book title)
Computer Aided Geometric Design
First Page
474
Last Page
484
Recommended Citation
Li, X., & Zheng, J. (2012). An alternative method for constructing interpolatory subdivision from approximating subdivision. Computer Aided Geometric Design, 29 (7), 474-484. https://doi.org/10.1016/j.cagd.2012.03.008