Action Recognition Based on CSI Signal Using Improved Deep Residual Network Model
Document Type
Article
Publication Date
1-1-2022
Abstract
In this paper, we propose an improved deep residual network model to recognize human actions. Action data is composed of channel state information signals, which are continuous fine-grained signals. We replaced the traditional identity connection with the shrinking threshold module. The module automatically adjusts the threshold of the action data signal, and filters out signals that are not related to the principal components. We use the attention mechanism to improve the memory of the network model to the action signal, so as to better recognize the action. To verify the validity of the experiment more accurately, we collected action data in two different environments. The experimental results show that the improved network model is much better than the traditional network in recognition. The accuracy of recognition in complex places can reach 92.85%, among which the recognition rate of raising hands is up to 96%. We combine the improved residual deep network model with channel state information action data, and prove the effectiveness of our model for classification through experimental data.
Publication Source (Journal or Book title)
CMES - Computer Modeling in Engineering and Sciences
First Page
1827
Last Page
1851
Recommended Citation
Zhao, J., Chong, S., Huang, L., Li, X., He, C., & Jia, J. (2022). Action Recognition Based on CSI Signal Using Improved Deep Residual Network Model. CMES - Computer Modeling in Engineering and Sciences, 130 (3), 1827-1851. https://doi.org/10.32604/cmes.2022.017654