Two-Level Graph Representation Learning with Community-as-a-Node Graphs

Document Type

Conference Proceeding

Publication Date

1-1-2023

Abstract

In this paper, we propose a novel graph representation learning (GRL) model that aims to improve both representation accuracy and learning efficiency. We design a Two-Level GRL architecture based on the graph partitioning: 1) local GRL on nodes within each partitioned subgraph and 2) global GRL on subgraphs. By partitioning the graph through community detection, we enable elaborate node learning in the same community. Based on Two-Level GRL, we introduce an abstracted graph, Community-as-a-Node Graph(CaaN), to effectively maintain the high-level structure with a significantly reduced graph. By applying the CaaN graph to local and global GRL, we propose Two-Level GRL with Community-as-a-Node (CaaN 2L) that effectively maintains the global structure of the entire graph while accurately representing the nodes in each community. A salient point of the proposed model is that it can be applied to any existing GRL model by adopting it as the base model for local and global GRL. Through extensive experiments employing seven popular GRL models, we show that our model outperforms them in both accuracy and efficiency.

Publication Source (Journal or Book title)

Proceedings - IEEE International Conference on Data Mining, ICDM

First Page

1259

Last Page

1264

This document is currently not available here.

Share

COinS