Title
GraphDTI: A robust deep learning predictor of drug-target interactions from multiple heterogeneous data
Document Type
Article
Publication Date
8-11-2021
Abstract
Traditional techniqueset identification, we developed GraphDTI, a robust machine learning framework integrating the molecular-level information on drugs, proteins, and binding sites with the system-level information on gene expression and protein-protein interactions. In order to properly evaluate the performance of GraphDTI, we compiled a high-quality benchmarking dataset and devised a new cluster-based cross-validation p to identify macromolecular targets for drugs utilize solely the information on a query drug and a putative target. Nonetheless, the mechanisms of action of many drugs depend not only on their binding affinity toward a single protein, but also on the signal transduction through cascades of molecular interactions leading to certain phenotypes. Although using protein-protein interaction networks and drug-perturbed gene expression profiles can facilitate system-level investigations of drug-target interactions, utilizing such large and heterogeneous data poses notable challenges. To improve the state-of-the-art in drug targrotocol. Encouragingly, GraphDTI not only yields an AUC of 0.996 against the validation dataset, but it also generalizes well to unseen data with an AUC of 0.939, significantly outperforming other predictors. Finally, selected examples of identified drug-target interactions are validated against the biomedical literature. Numerous applications of GraphDTI include the investigation of drug polypharmacological effects, side effects through off-target binding, and repositioning opportunities.
Publication Source (Journal or Book title)
Journal of cheminformatics
First Page
58
Recommended Citation
Liu, G., Singha, M., Pu, L., Neupane, P., Feinstein, J., Wu, H., Ramanujam, J., & Brylinski, M. (2021). GraphDTI: A robust deep learning predictor of drug-target interactions from multiple heterogeneous data. Journal of cheminformatics, 13 (1), 58. https://doi.org/10.1186/s13321-021-00540-0