Title
Algebraic Properties of Wyner Common Information Solution under Graphical Constraints
Document Type
Conference Proceeding
Publication Date
7-1-2019
Abstract
The Constrained Minimum Determinant Factor Analysis (CMDFA) setting was motivated by Wyner's common information problem where we seek a latent representation of a given Gaussian vector distribution with the minimum mutual information under certain generative constraints. In this paper, we explore the algebraic structures of the solution space of the CMDFA, when the underlying covariance matrix Σx has an additional latent graphical constraint, namely, a latent star topology. In particular, sufficient and necessary conditions in terms of the relationships between edge weights of the star graph have been found. Under such conditions and constraints, we have shown that the CMDFA problem has either a rank one solution or a rank n-1 solution where n is the dimension of the observable vector. Numerical results are provided to demonstrate the difference between the optimal mutual information and that derived under a naive star constraint.
Publication Source (Journal or Book title)
IEEE International Symposium on Information Theory - Proceedings
First Page
712
Last Page
716
Recommended Citation
Hasan, M., Wei, S., & Moharrer, A. (2019). Algebraic Properties of Wyner Common Information Solution under Graphical Constraints. IEEE International Symposium on Information Theory - Proceedings, 2019-July, 712-716. https://doi.org/10.1109/ISIT.2019.8849664