Title
Mapping excited-state dynamics by coherent control of a dendrimer's photoemission efficiency
Document Type
Article
Publication Date
10-9-2009
Abstract
Adaptive laser pulse shaping has enabled impressive control over photophysical processes in complex molecules. However, the optimal pulse shape that emerges rarely offers straightforward insight into the excited-state properties being manipulated. We have shown that the emission quantum yield of a donor-acceptor macromolecule (a phenylene ethynylene dendrimer tethered to perylene) can be enhanced by 15% through iterative phase modulation of the excitation pulse. Furthermore, by analyzing the pulse optimization process and optimal pulse features, we successfully isolated the dominant elements underlying the control mechanism. We demonstrated that a step function in the spectral phase directs the postexcitation dynamics of the donor moiety, thus characterizing the coherent nature of the donor excited state. An accompanying pump-probe experiment implicates a 2+1 photon control pathway, in which the optimal pulse promotes a delayed excitation to a second excited state through favorable quantum interference.
Publication Source (Journal or Book title)
Science
First Page
263
Last Page
267
Recommended Citation
Kuroda, D., Singh, C., Peng, Z., & Kleiman, V. (2009). Mapping excited-state dynamics by coherent control of a dendrimer's photoemission efficiency. Science, 326 (5950), 263-267. https://doi.org/10.1126/science.1176524