Title

The Assembly Mechanism and Mesoscale Architecture of Protein-Polysaccharide Complexes Formed at the Solid-liquid Interface

Document Type

Article

Publication Date

10-18-2022

Abstract

Protein-polysaccharide composite materials have generated much interest due to their potential use in medical science and biotechnology. A comprehensive understanding of the assembly mechanism and the mesoscale architecture is needed for fabricating protein-polysaccharide composite materials with desired properties. In this study, complex assemblies were built on silica surfaces through a layer-by-layer (LbL) approach using bovine beta-lactoglobulin variant A (βLgA) and pectin as model protein and polysaccharide, respectively. We demonstrated the combined use of quartz crystal microbalance with dissipation monitoring (QCM-D) and neutron reflectometry (NR) for elucidating the assembly mechanism as well as the internal architecture of the protein-polysaccharide complexes formed at the solid-liquid interface. Our results show that βLgA and pectin interacted with each other and formed a cohesive matrix structure at the interface consisting of intertwined pectin chains that were cross-linked by βLgA-rich domains. Although the complexes were fabricated in an LbL fashion, the complexes appeared to be relatively homogeneous with βLgA and pectin molecules spatially distributed within the matrix structure. Our results also demonstrate that the density of βLgA-pectin complex assemblies increased with both the overall and local charge density of pectin molecules. Therefore, the physical properties of the protein-polysaccharide matrix structure, including density and level of hydration, can be tuned by using polysaccharides with varying charge patterns, thus promoting the development of composite materials with desired properties.

Publication Source (Journal or Book title)

Langmuir : the ACS journal of surfaces and colloids

First Page

12551

Last Page

12561

This document is currently not available here.

COinS