Title

Self-Healable Electro-Conductive Hydrogels Based on Core-Shell Structured Nanocellulose/Carbon Nanotubes Hybrids for Use as Flexible Supercapacitors

Document Type

Article

Publication Date

1-6-2020

Abstract

Recently, with the development of personal wearable electronic devices, the demand for portable power is miniaturization and flexibility. Electro-conductive hydrogels (ECHs) are considered to have great application prospects in portable energy-storage devices. However, the synergistic properties of self-healability, viscoelasticity, and ideal electrochemistry are key problems. Herein, a novel ECH was synthesized by combining polyvinyl alcohol-borax (PVA) hydrogel matrix and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-cellulose nanofibers (TOCNFs), carbon nanotubes (CNTs), and polyaniline (PANI). Among them, CNTs provided excellent electrical conductivity; TOCNFs acted as a dispersant to help CNTs form a stable suspension; PANI enhanced electrochemical performance by forming a "core-shell" structural composite. The freeze-standing composite hydrogel with a hierarchical 3D-network structure possessed the compression stress (~152 kPa) and storage modulus (~18.2 kPa). The composite hydrogel also possessed low density (~1.2 g cm), high water-content (~95%), excellent flexibility, self-healing capability, electrical conductivity (15.3 S m), and specific capacitance of 226.8 F g at 0.4 A g. The fabricated solid-state all-in-one supercapacitor device remained capacitance retention (~90%) after 10 cutting/healing cycles and capacitance retention (~85%) after 1000 bending cycles. The novel ECH had potential applications in advanced personalized wearable electronic devices.

Publication Source (Journal or Book title)

Nanomaterials (Basel, Switzerland)

This document is currently not available here.

COinS