Title
Creep behavior of bagasse fiber reinforced polymer composites
Document Type
Article
Publication Date
5-1-2010
Abstract
The creep behavior of bagasse-based composites with virgin and recycled polyvinyl chloride (B/PVC) and high density polyethylene (B/HDPE) as well as a commercial wood and HDPE composite decking material was investigated. The instantaneous deformation and creep rate of all composites at the same loading level increased at higher temperatures. At a constant load level, B/PVC composites had better creep resistance than B/HDPE systems at low temperatures. However, B/PVC composites showed greater temperature-dependence. Several creep models (i.e., Burgers model, Findley's power law model, and a simpler two-parameter power law model) were used to fit the measured creep data. Time-temperature superposition (TTS) was attempted for long-term creep prediction. The four-element Burgers model and the two-parameter power law model fitted creep curves of the composites well. The TTS principle more accurately predicted the creep response of the PVC composites compared to the HDPE composites.
Publication Source (Journal or Book title)
Bioresource technology
First Page
3280
Last Page
6
Recommended Citation
Xu, Y., Wu, Q., Lei, Y., & Yao, F. (2010). Creep behavior of bagasse fiber reinforced polymer composites. Bioresource technology, 101 (9), 3280-6. https://doi.org/10.1016/j.biortech.2009.12.072